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In quite general N-component ferromagnetic spin systems, it is proved that an 
arbitrary correlation function is bounded by the corresponding correlation 
function of a Gaussian model. The bound is useful for the analysis of high-tem- 
perature behavior of the system. Similar bounds for truncated correlation 
functions are also obtained for a class of single-component spin systems. 

KEY WORDS: Rigorous inequalities; Gaussian model; clustering properties; 
truncated correlation functions. 

1, I N T R O D U C T I O N  A N D  M A I N  RESULTS 

The existence of a trivially solvable Gaussian model ~1) has produced 
unspeakable benefits to the study of spin systems. The Gaussian model 
provides us with a qualitatively satisfactory picture of critical phenomena, 
and in various systems, one can estimate the deviation from the Gaussian 
behavior by suitable perturbative methods. Moreover, many rigorous 
results for non-Gaussian systems have been obtained by comparing the 
relevant systems with the Gaussian model. ~2 57 

Here, for a very general class of ferromagnetic multicomponent spin 
systems, I prove that an arbitrary correlation function is bounded by that 
of a Gaussian model with the same Hamiltonian. And for a class of 
single-component spin systems, ! prove similar bounds for truncated 
correlation functions. 

Let A be a finite la t t i ce  (a set of s i tes )  of arbitrary geometry. To each 
site x e A, we equip N-component spin var iab le  ~ox = t w x  ~i= I,...,N, e ~.  
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The thermal expectation and the partition function of the system are defined 
as 

N 
( ' " ) ~ z - l  f H g ( l ~ x ]  2) [1 dq~(~)('") e -~  ( 1 . 1 )  

xEA i ~ l  

N 
Z =  f 1-[ g(](p~[2) 1-I dq~ ) e - y  (1.2) 

x~A i = 1  

where 
N 

I(P l : =  E 
i=1  

The Hamiltonian is 

9~ = -- ~ J(O co<O(o<O - ~F H<0(o(0 (1.3) x y r x  T y .~a--x "r x 
x,y,i x,i 

where interactions {J~)} and external fields {H~)} are arbitrary non- 
negative constants. Single-site distribution function g(s) is a nonnegative 
valued function defined on s > 0, which is normalized 

f i  d9 {~ g(Iq~[ 2) = 1 
i=1  

and satisfies e x p ( k s ) g ( s ) ~  0 as s + m for any real constant k. In par- 
ticular, we consider the following two classes of g(s). 

(i) g(s) is an arbitrary (generalized) function with bounded support, 
i.e., there exists a positive constant b, and g(s)= 0 for s > b. For  example, 
g(s) = const" 6( s -  1) defines the classical O(N) Heisenberg model. 

(ii) g(s)=const 'exp[-V(s)] ,  where V(s) is a smooth function 
satisfying V"(s)>0 for all s > a, where a is a finite constant, z An example is 
the N-component ~p4 model defined by V(s)= es + 2s 2 (e real, 2 > 0). We 
can also consider any well-defined limit of such g(s). 

For  an arbitrary index set A =  *aCi)/ (a~O=0, 1,2,...); we ( x Jx~A,i=I, . . .N 
write 

( ~ A =  I ~  (~9(J)) a(xi) ( 1 . 4 )  

x ~ A  
i=  1,...,N 

Then we have the following theorem. 

2 This can be satisfied if V(s) is a polynomial of s. 
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Theorem 1. To any single site distribution function g(s) in class (i) 
or (ii), and to any positive integer N, there corresponds a positive finite 
constant 3 c. Consider the thermal expectation ( - " )  defined by 
Eqs. (1.1)-(1.3) with g(s), and the Gaussian thermal expectation ( . . - ) a , c  
defined by the same equations with g(s) replaced by cons t . exp ( - s /2c ) .  
Then for arbitrary index set A, we have 

0=< (~oA)< (~oA) G,c (1.5) 

provided that the Gaussian expectation ( . ' - ) a ' c  is well defined. 

It should be noted that if the spin system (1.1)-(1.3) has a sensible 
infinite volume limit, (6'7) standard convergence argument assures that 
Theorem 1 is still valid in the limit. 

Theorem 1 (for vanishing external field) was derived by SokaP 4~ for 
N-component spin systems ( N =  l, 2, 3, 4) where the Gaussian inequalities 
are known. 4 Since his proof relies on the correlation inequalities, it seems 
hard to extend the proof to other spin systems, nor to cases with nonzero 
external fields. 5 On the other hand, the present proof applies to quite 
general spin systems (arbitrary N, nonzero external field, and almost 
arbitrary single-site distributions) since it does not rely on the full 
correlation inequalities. Instead it makes use of a version of high-tem- 
perature expansion and "single-site Gaussian inequality." "Single-site 
Gaussian inequality' is a kind of correlation inequality stated in a non- 
interacting spin system, and its proof is considerably easier than that of the 
usual correlation inequalities. Therefore, the present proof is formally 
applicable to a spin system with arbitrary interactions, such as Za-lattiee 
gauge theories. But in this case, the corresponding Gaussian model (i.e., the 
N =  1 Weingarten modeP 1~ is, unfortunately, always ill defined. (~~ (See 
Remark 3 in Section 3.) 

To see how the above theorem works, (4) consider an N-component 
spin system on a d-dimensional hypercubie lattice (i.e., A = Z d) with any 
single site distribution function g(s) in the classes (i) or (ii). A translation 
invariant Hamiltonian is defined by Eq. (1.3) with J~=JcSix_yhl,  J > 0 ,  
and H~ i) = H ~i~ > O. 

According to Section 3 [-Eqs. (3.6)-(3.8)], we choose a constant c, and 
define a Gaussian model with a single-site distribution function 
exp( -s /2c) ,  and the same Hamiltonian as above. It is easily observed that 
this Gaussian model is well defined for J <  (2dc) -1 and arbitrary n(i)~>O. 

3 Determination of the constant  c is discussed in the proof. See Section 3. 
4 Specific (but stronger) results can be seen in Refs. 8 and 9. 
5Sokal also proves Eq. (1.5) for nonzero H, if [A] = ) ~ x a x = l  and the system is in the 

GHS-class (N = l ). 
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Thus is this region, we can apply Theorem 1 to bound all the correlations 
by the corresponding Gaussian correlations. For magnetization, we have 

H (i) 
m (0 = (rp~)) <(2c) 1 dJ 

which recovers the mean-field bound for magnetization (~2-~6,as) in the first 
order of H (i). This immediately implies that the spontaneous magnetization 
is vanishing in this region. Next, if we set H (i) = 0, all the n-point functions 
exhibit the exponential clustering properties 

((o(il)(o(i2)'''(o(in))"~O a s  I x e - x j l - - , o o  
r X  1 r X  2 T X n 

These two properties imply the following simple lower hound for the 
inverse critical temperature 

ic > (2dc) - 1 

For the O(N)-Heisenberg model [ g ( s ) = c o n s t '  b ( s - 1 ) ] ,  we have [from 
Eq. (3.7)] c =  1IN and the above bound is nothing but the well-known 
mean-field bound (17-2~ 

Jc > N/2d 

Proof of Theorem 1 is given in the following two sections. In Sec- 
tion 2, we review a version of high-temperature expansion (8'2~ which is 
quite useful for our proof. Then in Section 3 we introduce single site 
Gaussian inequality and prove the theorem. In Section 4, we prove bounds 
similar to Theorem 1 for truncated correlation functions 
(~o~; q)e) = ( q ~ o  e )  _ (q~A)(~o e )  in a class of single-component systems. 

2. R A N D O M  L O O P - R A N D O M  WALK REPRESENTATION 

Here we use an expansion method and interpret our spin system into a 
system of (interacting) random loops and random walks [Eqs. (2.11), 
(2.12)]. For simplicity, we discuss in detail the simplest case with single 
component spin variables (i.e., N =  1), and vanishing external field (i.e., 
Hx =0).  

Let us expand the exponential functions in Eqs. (1.1), (1.2) into the 
following Taylor series: 

( Jxy )"  
eJx"~ = ---7(--. ( ~~ x q) Y )~ 

r t=O 
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Substituting this expansion into Eq. (1.2), we obtain an expression for the 
partition function 

= f H g(q'~) dq, x Z FI e J  xyqO xqOy 

x ~ A  x ,y  

~ x y x , y  " 
of  {~y} , 

first summation, where in the 
negative integers. We introduced single-site expectation 

(2.1) 

each nxy independently runs over non- 

( - ) o  = I g(q') &o(... ) (2.2) 

and used a convention nxy = nyx. 
Since the single-site expectation (2.2) is invariant under the change of 

variable ~o--, -(p, the last factor in Eq. (2.1) is nonvanishing only if ~z  n= 
is even for all x. Following Aizenman, (21) we regard e =- {nxy} asflux num- 
bers of a random Current on the lattice (see Fig. 1), and define its source set 
by 

O~---{x~A ~ nxz is odd} 
z 

Then Eq. (2.1) can be written as 

z= 2 {H(Jx')"xY~(~o~ .... )o} 
a~=~ x,y nxy[ 

(2.3) 

�9 �9 

Q 

Fig. 1. 

I[[ �9 �9 

I 
il " 

" " " T g 
�9 �9 �9 �9 ., �9 

0 

�9 

�9 �9 

�9 �9 

I 
�9 O ,  

I 
�9 �9 �9 ~-17~ �9 �9 �9 �9 

A random current configuration which contributes to the partition function. Number  
of segments on a bond corresponds to flux number  nxy. 
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Similarly we can express an arbitrary correlation function by random 
currents: 

(q&)Z= ~ {1-](JxY)'xY~(q~ .... +'X)o } (2.4) 
~3~ = OA x ,y  n x y  ! 

where aA is a set of sites with odd a~. 
For a while, we restrict ourselves to the Gaussian model characterized 

by g(s )=cons t ' exp( - s /2c ) .  Then the single-site expectation values in 
Eqs. (2.3), (2.4) can be explicitly evaluated as 

( ~02m)g "c = ( 2 m -  1)!! c m (2.5) 

Note that the quantity ( 2 m - l ) ! !  represents the number of ways of 
dividing 2m objects into m pairs. Accordingly, in the random current 
representations (2.3), (2.4), we divide ~2~ nxz currents attaching to site x 
into ( ~  n=/2) pairs, and regard each two currents in a pair as connected 
to each other. If we redefine the summation over the current configurations 
to count all the ways of pairing repeatedly, each factor ( ~  nx~- 1)!! on the 
site can be absorbed in more detailed countings as in Fig. 2. Moreover if 
we do not distinguish a current from another one on the same bond (i.e., if 
we look only at the topology of the resulting graph), each factor 1/nxy[ o n  
the bond also cancels out (see Fig. 3). 

Consequently, the expression for the partition function (2.3) of the 
Gaussian model can be rewritten in a simple form 

Z = ~ ~I f ( l )  (2.6) 
{t) l 

where the first summation runs over all the possible configurations of 
(arbitrary numbers of) random loops. A random loop I with length Ill = n is 
a set of lattice bonds of the form 

l=  {(Xo, xl), (x,, x2) ..... (x._, ,  Xo)} 

(4-1)!! 
II 
I +LI +If 

Fig. 2. Cance l l a t i on  of a factor  on  a site. 
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1 
2~ /Ji 

Fig. 3. Cancellation of a factor on a bond. 
1 

where x; are arbitrary lattice sites (with possible duplications) satisfying 
x i r  Two such sets l , l '  represent the same loop if and only if 
xi=x' i+~(mod k) holds for some k. 

The non-negative weight factor f ( / )  has the simple form 

1 
f(1) = f C  I'1 x -~, s e {0, 1, 2,... } 

where f =  Jxo~,Jxl,2."Jx,_,xo. The symmetry factor 1/2 * is not relevant to 
the present analysis. (The constant s is nonzero if and only if l is a loop 
consisting of duplicated copies of a curve.) Equation (2.6) can be inter- 
preted as representing a system of  noninteracting random loops. 

Introducing a random walk co with length leo[ = n  connecting X=Xo 
and y = x,  

(2) = { ( X 0 ,  X l ) ,  ( X l ,  X2)  ..... ( X n _  1 , X n ) }  

a correlation function can also be represented by noninteracting random 
loops and random walks (Fig. 4) 

Z ' < cP~, r ' '" r >~'r = Z E E l - I f ( o o i ) I ~ f (  I ) 
all pairings oJi: Pi ~ qz { I} i 1 
(Xl,...,X2n) ( i= 1,...,n) 

({Pl,ql},{P2,q2},.. . ,{Pn,qn}) (2.7) 

where f(co)=J~176 and the second summation runs over all possible 
random walks connecting p~ and q~. 

If we divide Eq. (2.7) by Eq. (2.6), all the contributions from random 
loops cancel and we recover the following well-known expression for the 
correlation function of the Gaussian model: 

<~Ox~ CPxz,.. Gc ~ox2~ ' = E E E f((o,) 
all pairings eoi: Pi ~ qi i 
(Xl,-.,x2n) ( i= l,...,n) 

({Pl,ql},.. . ,{ Pn,qn}) 

all pairings 
(2.8) 
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X A 
W 

I 
I , 

[ 

A random loop-random walk configuration for correlation function (~0x~Oy). Fig. 4. 

In general non-Gaussian systems, we have no closed expression for 
single-site expectations like Eq. (2.5). To execute a combinatorial transfor- 
mation similar to that we have done in the Gaussian model, we formally 
rewrite Eq. (2.3) as 

c3e = .Q~ x,y nxy---~" ~x e(~--"znxz/2) 

where c is an arbitrary positive constant, and the extra factor I(m) is 
defined by 

(~o2m)o 
I(m) = (2.10) 

(2m-- 1)!! c m 

Then it is easy to obtain the expressions corresponding to Eqs. (2.6) and 
(2.7). 

all  pa i r i ngs  coi:Pi~qi {l} i 
( i  ~ l , . . . ,n)  

where mx denotes the number of currents passing through the site x. It is 
very natural to interpret the terms with I(mx) as the interactions between 



Gaussian Bounds for Correlations in Lattice Spin Systems 881 

the random loops and random walks. In the next section, we argue that for a 
suitable choice of the constant c, these interactions work to avoid the inter- 
sections between loops and walks. Because of these interaction terms, we 
have no formula corresponding 6 to Eq. (2.8). 

To complete our discussions on the random loop-random walk 
representation, we have to extend the present formalism to multicom- 
ponent systems with nonvanishing external field. 

To deal with the external field terms, we again expand the exponential: 

Hx n 

n ~ O  

Here n can be interpreted as a number of external sources which is 
graphically represented by "crosses" (Fig. 5). Then in the random 
loop-random walk representation, there appears a random walk ter- 
minated by crosses with extra factor H, and "single-site bubbles" consisting 
of 2m crosses and carrying a factor (H2c/2)m/m! (Fig. 6). Correlation 
functions of the Gaussian model can again be written in terms of non- 
interacting random walks. 

6 Actually, it is possible to obtain a version of Eq. (2.8) by a further modification of the 
present scheme. (2~ 

q 

X X X "X 

�9 �9 �9 @X 

X 
�9 *X  X ,X  �9 

X X 

Fig. 5. A random current configuration with external field which contributes to the partition 
function. 
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X@ 

T V 
A 

x I v Z 

Fig. 6. A random loop-random walk configuration with external field for correlation 
function ( (~ x q) y ~O z ) .  

For multicomponent spin systems, we note that the single-site expec- 
tation 

N 
( " ) o = f  g(l~L 2) [ I  dq r176 ( ' " )  (2.13) i=1 

is invariant under q0 (i)--, -~0 (i) for any component i. Therefore, we can 
execute the expansions and combinatorial transformations independently in 
each component. Consequently we obtain random loops and random walks 
running in N different layers and interacting via the factor 

i({mi}) = ( l i L t  (CP(O)2m')o 

1-I~= 1 ( 2m~- 1)[! C E~Llm' 
(2.14) 

3. B O U N D S  FOR C O R R E L A T I O N  F U N C T I O N S  

We now prove the Gaussian bound for arbitrary correlation functions 
(Theorem 1). The basic idea of the proof is to cut off  the interactions 
between the random walks propagating the correlations and the other ran- 
dom loops and walks (Fig. 7). 

Mathematically, this cutting off  is done by the following single-site 
Gaussian inequality. 

Lemma 2. To any single-site distribution function g(s) in class (i) 
or (ii), and to any positive integer N, there corresponds a positive finite 



Gaussian Bounds for Correlations in Lattice Spin Systems 883 

I I  

X 71 i_J 
Fig. 7. The idea of bounding (q~xq~y) by (~Ox~Oy) a'~, when N =  1 and H x = 0 .  

constant c. And for the corresponding single-site expectation 7 (2.13), we 
have 

(G~01 2m,\ < = ~0)/o =(2mi  

for arbitrary ml, m 2 . . . . .  mN>=O. 

{jOl rt~2t;yj \ + 1) c ~'~J)/o (3.1) 

Proof  o f  Theorem 1 given Lemma 2. We discuss the most general 
case with arbitrary N and nonzero external fields. First we set the arbitrary 
constant c which appears in the definition of I({mi}) [-Eqs. (2.9), (2.10), 
and (2.14)] equal to that determined by Lemma 2. Consider the random 
loop-random walk representation of the quantity 

Z ( ( o ( i l ) ( o ( i 2 ) ' " ~ o ( i n ) ) ,  x j ~ A ,  i j= 1 ..... N \ TX 1 TX  2 

In this representation, there appear two types of random walks. One con- 
sists of "background" random walks whose two ends are terminated by 
external field "crosses," and another type consists of the random walks ter- 
minated by (one or two) sites in the correlation function. We suppose that 
through a site x, ,(o currents from random loops, "single-site bubbles," '~b.g. 
and "background" random walks are passing, and n(jo)rr currents from the 
second type random walks are passing, respectively, for each component i. 
Then applying the single-site Gaussian inequality (3.1) repeatedly at site x, 
we get 

I N " 4- n (i) I \  
i~=1__ ( (~ (xi) ) 2(n(b!g. - . . . . .  /o 

{ -1),, } ( , 0 1  " K ~ " b . g . -  " c o r r  CZ~_ i n(c~rr  [(t)(i)]2n(~?g.~ 
--< ~,~-z_ T;~ , ~ x ,  / o  b.g. Y'" 

7 Here and in the proof  of the lemma, we write ~o(i ) instead of ~o (~) since we only discuss the 
single-site expectation. 
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which with Eq. (2.10) implies 

I( Y,(/) -~ ,(0 *)=<I({nCbgg.}) U~b.g.  ~ ~*corr J (3.2) 

Substituting Eq. (3.2) into random loop-random walk representation 
[corresponding to Eq. (2.12)3, and using the representation for the par- 
tition function similar to Eq. (2.11) we obtain 

Z < q 2 ~  ) ' " " (~176 x~ . 

{H } = ~ ~ f(o9) I-I f(1) [I f(b) I] I(n(~ oomx + nb.g.,~) 
pair ings  {a) },{l},{b} x,i 

2 Y~ I-Is(<o) x s(<~') IIf(o I] s(b) II (,.,~) 
pair ings  {m} {~o'},{l},{b} x,* 

pai r ings  { e) } 

From the formula (2.10) for correlation function of the Gaussian model, we 
get the desired Gaussian bound 

(The first inequality is the Griffiths inequality, (='6/ which is a 
straightforward consequence of the expansion scheme of the previous sec- 
tion.) | 

Proof of Lemma 2. The proof makes use of the standard Fourier 
transformation and integration-by-parts method.(2~ Regarding g(l~t 2) as 
a function of (9~(0) 2, i=  1,..., N, we introduce its Fourier representation 

f ia,<p~ 0 ~({ai}) g([~[2)= i=ldaiexp - i  

We consider Eq. (3.1) for i=  1 

i = 1  i ~ l  i = 1  
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Executing integrations-by-parts m~ times for each component, we have 

= (2m~ + 1) ( 2 m , -  1)!! dcp~ da~ .cp~) (2ia,) ~' 
i ~ l  i = 1  = 

x e x p ( - ~  iaiq)~i))~({ai}) 
i = 1  

Inserting the identity 

1 fo e e--2iattm [ 
(2 ia )  - -(-~--~. dt ( m > _ l )  (3.3) 

and transforming back to non-Fourier representation, we get 

= (2m I + 1) (2mi-- 1)!! dq)(i) dt~ - -  
i = l  i = l  i = 1  

• ~ ,~g( {~ ,~+2 t i } )  

= (2m1 + 1 ) (2m~ -- 1 )!! dq) (i) dt~ - -  
i = 1  i = 1  i ~ l  

2 2t~}) (3.4) • (~o~,)z,  , g({~o~ + 

( m i -  1)! 

(mi- 1)! 

where we introduced single-site expectation modified by t: 

S l-IN=, dq)(i)g(r~lz + 2t)( "'" ) 

In the next part of the proof, we show that constant c can be chosen to 
satisfy 

( ~ 1 ) ) ~ < c  for any t=>O 

Using this result, we obtain the desired Eq. (3.1) 

i =  0 

< (2m~ + 1) c I-[ (2mi-  1)!! f do(i) dte 
i = 1  i = - 1  i = 1  

= (2m~ + 1)c v-(i) / o  

(3.5) 

t m i - -  1 

( m , -  1)[ g({q)~o + 2ti}) 
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The last identity follows from the calculation similar to that used in deriv- 
ing Eq. (3.4). | 

Proo f  o f  Eq. (3.5) How to determine the constant c. We demonstrate 
that we can choose a finite constant c satisfying 

e>max{ (~o~,)), I t>O} (3.6) 

We consider two classes of single-site distribution functions separately. 

Class i (bounded spin systems). Since g(s) is vanishing for s > b ,  we 
have 

" 2 1 1 Sd~g(l~12+2t) l~12<l ( b - 2 t )  

Thus max{(q~l)),} is bounded by b/N. We can set 

c = b / N  (3.7) 

Class ii {exp[ -  V(s)] measure}. We will prove that d/dt (q)~l ) ) t<O 
for t>a/2 .  (See Section 1 for the definition of the constant a.) Then it is 
clear that 

max{ (qo~l)), I t>0} = max{ (cp~,))t [ a / Z > t > O }  < oo 

In particular if a = 0  (i.e., V"(s )>O for all s>0),  we have 

c =  (3.8) 

To prove the claimed inequality for the derivative, we note that 

dta ((p~)) = N ~  (1~12) = 1  d N2 [~02V'(q~2 + 2t)] E 1 3113 2-  [cp2] [ V'(q~2 + 2t)3 

where 

[ . . . 3 =  ~oN_ l &o(. . . ) e v(~02 + 2,) 

Using two independent variables ~0, O and duplicated expectation 

[ [ . . . ] ] =  (pN-l d~o~tN-l dO(...)e-V(q~ 

we can rewrite the numerator as 

[ [~p2 V'(q~2 + 2 t ) -  qo2V'(O 2 + 2t)]] 

= �89 [ E(~0 2 - ~bi)(V'(q~ 2 + 2 t ) -  Vt(@ 2 -~- 2/))3 ] 
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Since V'(s + 2t) is nondecreasing in s for t> a/2, the quantity (1/2)[ [ ' .  "] ] 
is non-negative and we obtain the desired inequality. | 

Remarks 

(1) If g(s) in class (i) can be obtained as a limit of some single-site 
distribution in class (ii) with a = 0, one should use the formula (3.8) for the 
determination of c, which is always not worse than Eq. (3.7). 

(2) As is clear from the proof, we can consider more general boun- 
ded spin systems where g({ (P(i~ } ) is an arbitrary (generalized) function with 
compact support and invariant under ~o(0 ~ -q0(o for any i. This allows, 
for example, O(N)-clock models (discrete vector models) and the three- 
state Potts model. 

(3) In the Ising models with ~cp2n)o= 1, we can use the inequality 
1 / { 2 ( n + m ) - l } ! ! < { 1 / ( 2 n - 1 ) ! ! } { 1 / ( 2 m - 1 ) ! ! }  instead of Eq.(3.1) to 
obtain an improved upper bound in terms of random walks with 
1/(2n-1)!!  self interactions. This improvement yields well-defined upper 
bounds for the loop expectation values of Z2-1attice gauge theories as 
well. (26) 

4. B O U N D S  FOR T R U N C A T E D  C O R R E L A T I O N  F U N C T I O N S  

In the present section, we restrict ourselves to single-component spin 
systems (i.e., N = 1). The single-site distribution functions in consideration 
are the whole of the class (i) and the following subset of class (ii): 

(ii)' g(s)= c o n s t . e x p [ - V ( s ) ] ,  where V(s) is a polynomial of s with 
nonnegative coefficients. Again any well-defined limit is also considered. 

For any index sets A and B, we define a (once-) truncated correlation 
function by 

T h e o r e m  3. To any single-site distribution function g(s) in the 
classes (i) or (ii)', there corresponds a finite positive constant 8 ~. For any 
index sets A and B, we have 

(4.1) 

provided that the Gaussian expectation ( . . . )G ,e  is well defined. 

s The constant ? is determined in the proof [Eqs. (4.5) and (4.6)]. For spin-I/2 Ising model 
g(s) = (1/2) 6(s- 1), we can set ?=c= 1. 
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Theorem 3, for the case of [AI = IB] = 1, was also proved by Sokal (4) 
for any single-component system in the GHS-class (i.e., 
Ellis-Monroe-Newman class(24~). The present proof, unfortunately, does 
not cover whole of the GHS-class. 

Again the above theorem is valid in any sensible infinite-volume limit. 
Using the theorem, one can prove stronger clustering properties 

(qoA; q0~+ Y) --* 0 as {yl ~ oo 

for arbitrary values of nonnegative external field if the interaction is suf- 
ficiently small (i.e., the temperature is sufficiently high). Here B + y denotes 
{b~_ y}x~A if B is {bx}x~A. 

ProoL The proof is done by combining the method developed in the 
preceding sections and the standard technique of duplicated variables. 

Let {~0~} and { ~ }  be two independent sets of spin variables. 
Duplicated thermal expectation is defined by 

('")auP= (ZauP)-I f l~ dq)~dOx g(~ ~ g(O2)(...) e-~e({~})- ~({q,}) (4.2) 
x 

Define as usual (23'7) 

1 rx=~ (~o~+ ~), 1 
Qx = ~ ((px- 0~), x e A  (4.3) 

We regard {Tx} and {Qx} as the first and second components, respec- 
tively, of our duplicated two-component spin system, and are going to 
prove the following Gaussian bounds for this system: 

0<= ( TAQB) dup< = ( TAQB) daue p (4.4) 

Then using the well-known relation 

((pA; q)~) ---- ( q ~ A p n  q~A0~)aup = ~ const(C, D)(QCTD)aup 
C,D 

where const(C, D)>0,  and noting that the Gaussian model is invariant 
under the transformation (4.3), we obtain the desired inequality (4.1). 

To prove the asserted bound (4.4), we repeat every step in Sections 2 
and 3 for {Qx}, {Tx} variables. The only difference is that the single-site 
distribution function 

~(Q2,T2 ) =_ g(q)Z) g(02) 
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is generally not  a funct ion of of Q2q_ T 2. Hence  the cons tant  ~ must  be 
determined to satisfy 

where 

g > m a x { ( Q 2 ) , , , ,  J t, t '=>0} 

( . . . ) , , , _ S d Q d T ~ , ( Q 2 + 2 t ,  T2 + 2 t ' ) ( ' )  

- y d Q d T ~ , ( Q 2 + 2 t ,  T 2 + 2 t  ') 

Fo r  g(s) in class (i), not ing that  Iqo[ and ItP[ are always bounded  by a 
constant  b 1/2, we have 

So one can set 

max{  (Q2)~,c} < I ~ 2 2  (b 

2 

1/2+bl/2) = 2b 

g = 2b (4.5) 

which is, by a factor  of  2, worse than  the non t runca ted  case, Eq. (3.7), 
Fo r  g(s) in class (ii)', we can again show that  (Q2)~ , , ,<  (Q2)0,o for 

any nonnegat ive  t and t'. Thus  one can set 

g = c =  (~O2)o (4.6) | 
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